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Video Captioning Annotation Examples & Key Findings

Ground Truth

two men are in a wrestling match

a referee coaches a wrestling match

a wrestler does a victory dance

man wrestle profesionally

two guys are wrestling in a competition

Key Findings:

1) 1 clip vs multiple diverse sentences annotations for different regions/segments

2) Current video captioning methods only generate 1 description per clip.

3) Training with 1:N (visual feature : sentences) is Inaccurate even with soft-attention.

Motivations: weakly grounding/attend sentence to region-sequences for captioning?



What is Traditional Video Captioning?

* Goal: Generate one sentence per input clip
* With multiple video-level sentence annotations.
* With only one global video clip representation.

* Weakness
* One visual representation to N-sentences

* Typical Methods
* Sequence-to-sequence video captioning
e Describing Videos by Exploiting Temporal Structure (soft-attention)
* Jointly Modeling Embedding and Translation to Bridge Video and Language



Methods for Single Sentence Captioning
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What is Dense Video Captioning?

* Goal: Generate multiple diverse/informative sentences per input clip
* With only video level sentence annotations.
* Through weakly attend sentences to region-sequences.

* Avoid
* Mis-matching due to 1-visual : N-sentences
* Tedious annotations for strong supervised learning.

* Three Components
* Lexical FCN: for region-level encoding using lexical vocabulary
* Sentence to region-sequence association
* Sentence generation with sequence-to-sequence learning



Training Lexical-FCN
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Learned Response Maps
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Sentence-to-region-sequence Association

frame, frame, | - | framen * Informative
max-informative

el At B A0t A At flnf XV7At E p 7

! TO coherence 7"0 T'O ' LM §0

- 2 m | o * Coherence
= | § maximizediversity
® || ‘g coherencer—17 = [T 1 LM feoh =) (Xry, Xr,),
o | 7'11 e 7'21 e Tr}l ,L;>§1 rs€AL—1 ’
-+ | | . . .
S| * Diversity (KL divergence)
5 - maximize diversity '

ves ' p;u
bl itpetees ettty \ fdiv = /pwlog—dw.
| h |coherence[ L h LM Ap v ; W qw
I

Greedy solution: submodular maximization with these 3 cues



Framework Overview
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Video Ground-truth Descriptions:

1.'a woman is taking a picture of children.'
2. 'a man involving three children.’

3. 'a group of people are looking at and taking
pictures of a horse.'
4. 'a short clip showcasing a champion horse.
5. 'a woman in a red blouse takes a picture.’
6. kids are in playful mood.'
7. kids are posing for a picture and being
interviewed.'
8. 'lady taking pictures of horse.'

20. 'three man is describing a car.'

WTA based sentence-to-region-sequence association
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Ablation Experiments on MSR-VTT Validation Set

Method | METEOR BLEU-4 ROUGE-L CIDEF

VideoLAB 27.7 39.5 61.0 44.2
Aalto 27.7 41.1 59.6 46.4
V2t_navigator 29.0 43.7 61.4 45.7
Ours w/o category  27.7 39.0 60.1 44.0
Ours category-wise  28.2 40.9 61.8 44.7

Ours+C3D+Audio 29.4 44.2 62.6 50.5
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Best Single Model Results on MSR-VTT

Team _____|Memo | METEOR _|BLEU-4 ROUGE-L CIDEr

Ruc-UVA RUC + UVA + ZJU 26.9 38.7 58.7 45.9
VideolLab UCB + Austin + ... 27.7 39.1 60.6 44.1
Aalto Aalto Univ. 26.9 39.8 59.8 45.7
V2t-navigator RUC + CMU 28.2 40.8 60.9 44.8

Ours Fudan + ILC 28.3 41.4 61.1 48.9



Measure of Diversity on MSR-VTT
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Examples: Dense Video Captioning
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a man is drinking from a cup
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a man in a suit is talking to another man in a suit



Demo: Dense Video Captioning




Summary of DenseVidCap

* Lexical-FCN for weakly region modeling.

e Attend sentences to region-sequence with Lexical-FCN outputs.
* Dense video captioning with only video-level annotations.

* Avoid the problem of 1:N (feature to sentences) matching



Projects in ICCV'17

DSOD (Deeply Supervised Object Detectors from Scratch).

»Rol pooling is just like max pooling

Log loss + smooth L1 loss Multi-task loss

»Forward / backward proposal | Lmoor ©

classifier | softmax

Bounding box
regressors

Bk

A A&y Rolpooling

@&E/ ~ RO

" Backbone

J\

ConvNet
4 (applied to entire - )
= E image)

Figure from Ross Girshick
Ross Girshick. “Fast R-CNN”. ICCV 2015.



down-sampling block
concatenation operation|
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Paper: https://arxiv.org/abs/1708.01241
Code & models: https://github.com/szq0214/DSOD
Network: http://ethereon.github.io/netscope/#/gist/b17d01f3131e2a60f9057b5d3eb9e04d



Projects in ICCV'17

»Network Slimming (ICCV’17)
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“Learning Efficient Convolutional Networks through Network Slimming”. Zhuang Liu, Jianguo Li, Zhigiang Shen, Gao Huang, Shoumeng
Yan, Changshui Zhang. ICCV’17

Code: https://github.com/liuzhuang13/slimming



Thanks & Questions

My homepage: http://www.zhigiangshen.com/
Email: zhigiangshen0214@gmail.com
Any comments or suggestions are welcome!




