Semantic Image Segmentation

Falong Shen 08/20/2017

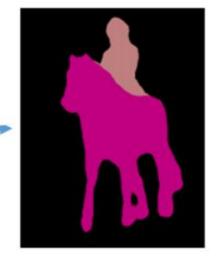
Outline

- Introduction to semantic image segmentation
- Related Works
 - FCN
 - Deeplab
- Proposed Methods
 - High order context: MAP
 - Guidance CRF: delineate the object boundary
- Experiments
 - Top performance on segmentation datasets: pascal voc, cityscapes, imageNet...
 - Ablative Studies
 - Fast and accurate segmentation
 - Conclusion

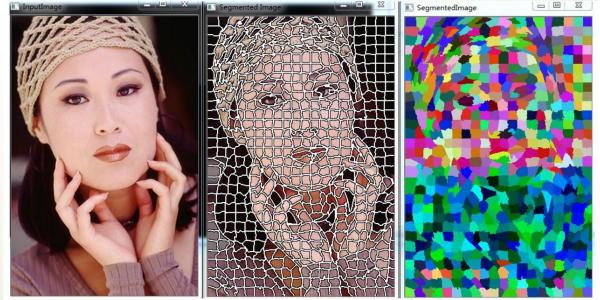
Introduction to semantic image segmentation

Task:

图像语义分割+-



ϕ Id methods:

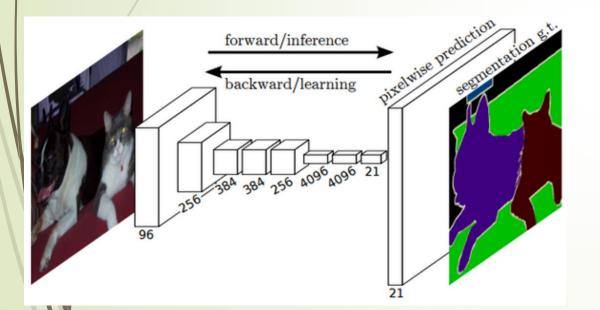


Datasets

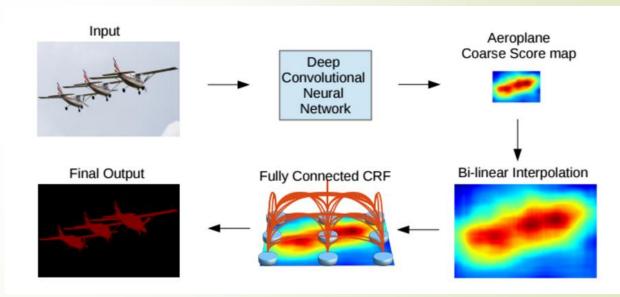
Pascal VOC 2012

- ~300x500 arbitrary image
- 21 categories: plane, person, bird, bike...
- ~10,000 pixel label images. (inconsistent label strategy for some categories)
- Cityscapes
 - 1024x2048 urban street image
 - 19 categories: person, car, bus, sky...
 - 3475 pixel label images.
- MIT Scene Parsing
 - Arbitrary image
 - 150 categories: person, sky, road, grass
 - ~20,000 pixel label images

Fully convolutional neural networks



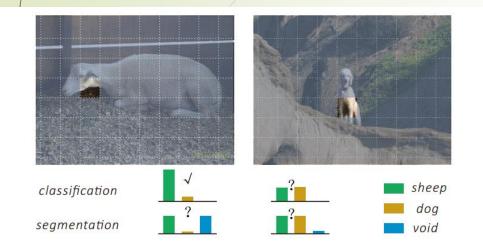
Deeplab (dilated CNN + bilateral CRF)



Proposed Methods

- Structured Patch Prediction
- High order context: MAP
 - Guidance CRF: delineate the object boundary

Structured Patch Prediction



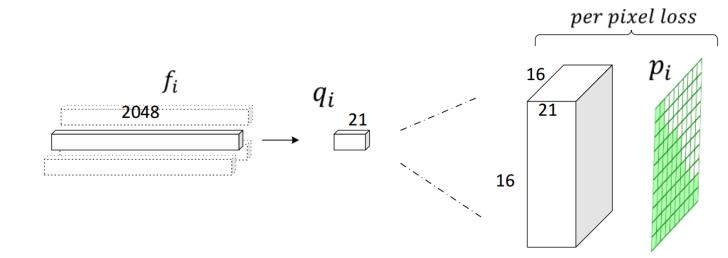
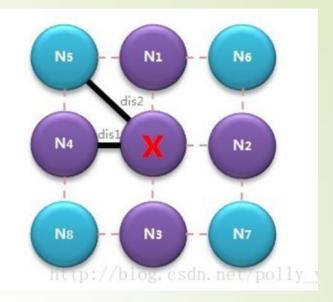


Figure 1: The belief-frequency ambiguity when transferring model from classification to segmentation. The right image is a hard example and both models produce a confusing prediction. The left image is an easy example, the segmentation model still produces a confusing prediction in order to make spatial prediction.

Figure 2: The 2048-D feature vector goes through a 21-D bottle neck before up-sampling to 16×16 , which leads to heavily information loss.

Markov random field

- MRF = Undirected graph:
 - $P(X_i | X_{G \setminus i}) = P(X_i | X_{N_i})$
 - Independent without edge
- MRF \leftrightarrow Gibbs distribution
 - $P(X) \propto \prod_c \phi_c(X_c)$

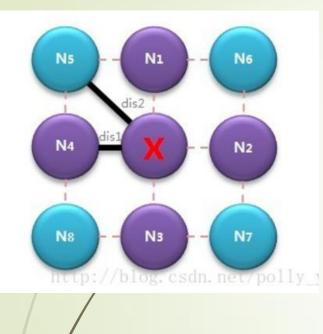


 $\max_{X} P(X|I)$

Proof:

- Gibbs distribution → MRF
 Very Easy. Del the common factor is OK.
- 2. MRF \rightarrow Gibbs distribution
 - Construct the potential function ϕ for each cliques (connected sub-graph).

Second order MRF



 $\max_{X} \sum_{i} \phi_{i}(x_{i}) + \sum_{i,j} \psi_{ij}(x_{i}, x_{j})$

 $\max_{X} P(X|I)$

 $P(X) \propto \prod_{c} \phi_{c}(X_{c})$

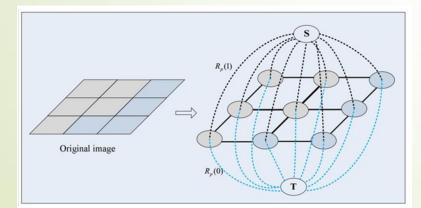
Maximum a posteriori (MAP)

$$\max_{X} \sum_{i} \phi_{i}(x_{i}) + \sum_{i,j} \psi_{ij}(x_{i}, x_{j})$$

Solution 1. Mean field

$$\min_{Q} \mathsf{KL}(\exp\left(\sum_{i} \phi_{i}(x_{i}) + \sum_{i,j} \psi_{ij}(x_{i}, x_{j})\right), \qquad \prod_{i} Q_{i}(x_{i}))$$

Solution 2. Graph cut (two states)



High order context

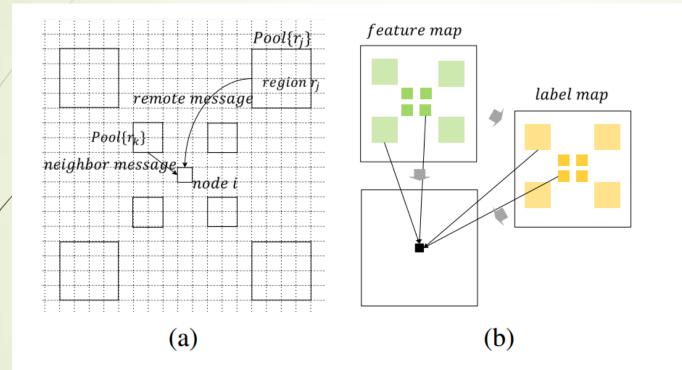


Figure 3: Illustration of context CRF. (a) We exploit a quite large field $(28 \times 28 \text{ on the feature map})$ to collect context information. The messages from neighbor regions and remeasure regions are pooled with different size in order to avoid over-fitting. (b) Both feature map and score map are exploited to produce messages.

Guidance CRF

Algorithm 1 Guidance CRF

Forward

input: Down-sampled Guidance image *I*, segmentation score map ϕ^u , compatibility matrix μ , weight parameter λ ,maximum iteration k_{max} , k = 0, $\phi^0 = \phi^u$. while $k < k_{max}$

- 1. $q^k(x_i) = \frac{1}{Z_i} \exp[-\phi^k(x_i)].$ \triangleright Softmax
- 2. $g^k(x_i) = \sum_j w_{ij}(I)q^k(x_j)$ \triangleright Guided filtering

3. $m^k(x_i) = \sum \mu(x_i, x_j) g^k(x_j) \triangleright \text{Compatibility transform}$

4.
$$\phi_i^k(x_i) = \phi_i^u(x_i) - \lambda m^k(x_i)$$
 > Local update

5. k = k + 1

endwhile output: marginal potential ϕ^b

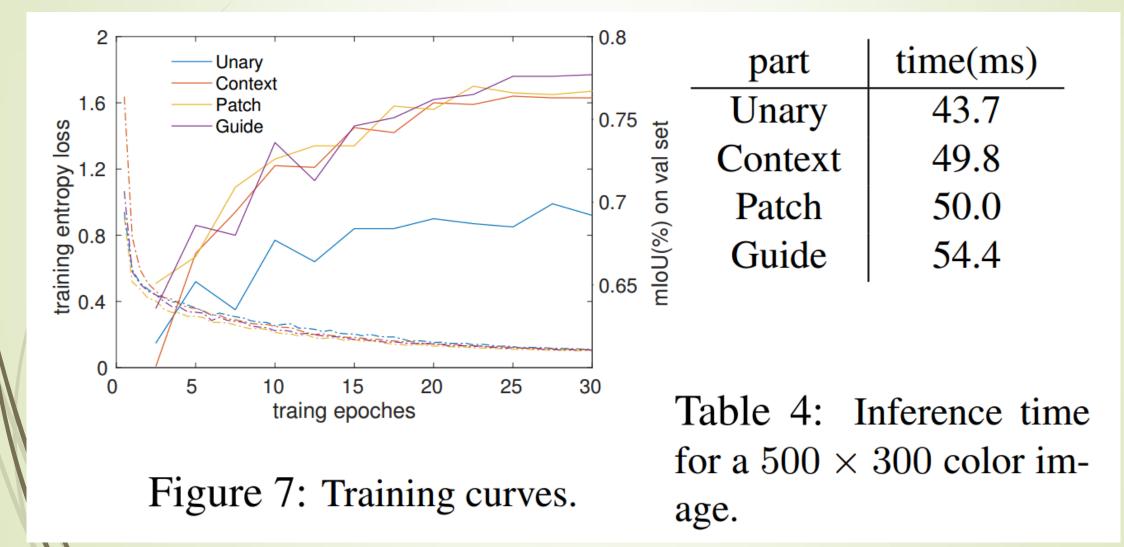
Experiments

Table 1: Results on Pascal VOC 2012 *test* set and Cityscapes *test* set. Measured by the mean IoU (%). Both of our submitted models are fine-tuned from Resnet-101 and exploit MS-COCO.

Method	PasVOC12	CityScapes
DPN[23]	77.5	66.8
Dilation10[33]	-	67.1
Adelaide_context[19]	77.8	71.6
Adelaide_VeryDeep[31]	79.1	-
LRR_4x	79.3	71.8
DeepLab-v2	79.7	70.4
CentraleSupelec Deep G-CRF[1]	80.2	-
SegModel	82.5	79.2

Table 2: Results on ADE20K *val* set and *test* set. Measured by the average of mean IoU and pixel accuracy (%). Our models are trained on ADE20K *train* set, without resorting to MS-COCO or Place365. The performance on the *val* set is evaluated by a single model.

Method	val	test
CRFasRNN 35	-	47.0
ACRV-Adelaide [19]	-	53.3
Hikvision	60.4	53.4
CASIA_IVA	-	54.3
SegModel	61.2	54.5
360+MCG-ICT-CAS_SP	-	55.6
Adelaide 31	-	56.7
SenseCUSceneParsing[34]	63.1	57.2



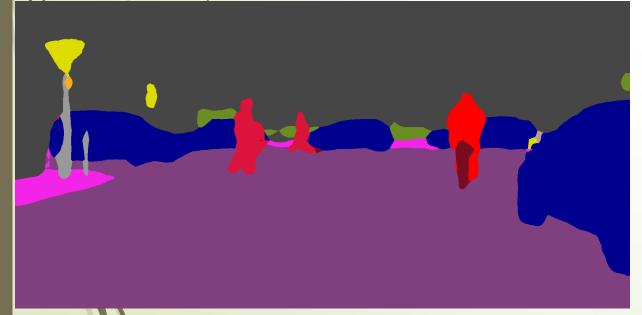
Fast segmentation

■ Down-sample input image from $1024x2048 \rightarrow 256x512$

Feed into FCN

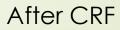
Up-sample the scoremap and align the object boundary with guidance CRF.

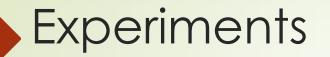
The total process costs about 60ms on a Pascal Titan X with fp32.

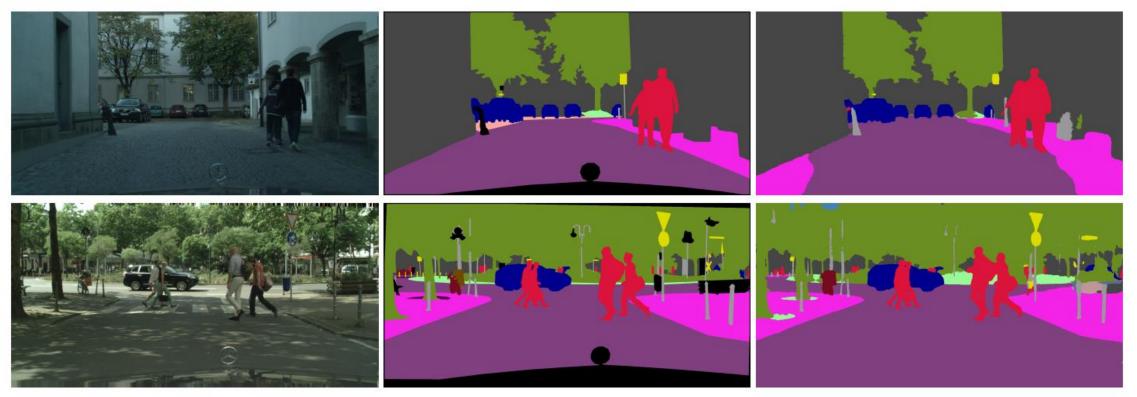




Before CRF







(a) Input

(c) Prediction

Figure 5: Some visual results of Cityscapes val set. It costs about 0.5s for a 2048 × 1024 color image S + J · · · ·

⁽b) Truth

Conclusion

- The dominant framework of semantic segmentation is FCN + CRF.
- The base model is important to train a good segmentation model.
 - Good classification model are Not always good segmentation model.
 - Very important to get rid of over-fitting.
- Our segmentation model is fast and accurate. It is a good choice to use our SegModel for semantic image segmentation.